An analysis of convection in a mushy layer with a deformable permeable interface

Author:

ROPER S. M.,DAVIS S. H.,VOORHEES P. W.

Abstract

We study the dynamics of a mushy layer in directional solidification for the case of a thin near-eutectic mush with a deformable and permeable mush–liquid interface. We examine the onset of convection using linear stability analysis, and the weakly nonlinear growth of liquid inclusions that signal the onset of chimneys. This analysis is compared to past analyses in which the mush–liquid interface is replaced by a rigid impermeable lid. We find qualitative agreement between the two models, but the rigid-lid approximation gives substantially different quantitative behaviour.In linear theory, the rigid-lid approximation leads to an over-estimate of the critical Rayleigh number and wavenumber of the instability. The condition for the onset of oscillatory instability is also changed by a factor of about 5 in composition number C. In the weakly nonlinear theory, the location of the onset of liquid inclusions is near the undisturbed front for the free-boundary analysis, whereas it lies at the centre of the mushy layer when the rigid-lid approximation is used. For hexagonal patterns, the boundary between regions of parameter space in which up and down hexagons are stable, shifts as a result of coupling between the liquid and mush regions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interfacial Dynamics Pioneer Stephen H. Davis (1939–2021);Annual Review of Fluid Mechanics;2024-01-19

2. Effect of solidification direction on microstructure and mechanical property of single crystal superalloy CMSX-4;Materials Characterization;2023-08

3. Mushy-layer growth and convection, with application to sea ice;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-04-15

4. Magnetohydrodynamic stationary and oscillatory convective stability in a mushy layer during binary alloy solidification;Applied Mathematical Modelling;2017-08

5. Finite bandwidth, nonlinear convective flow in a mushy layer;Fluid Dynamics Research;2017-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3