Spreading characteristics of compressible jets from nozzles of various geometries

Author:

ZAMAN K. B. M. Q.

Abstract

The spreading characteristics of jets from several asymmetric nozzles, and a set of rectangular orifices are compared, covering a jet Mach number range of 0.3–2.0. The effect of ‘tabs’ for a rectangular and a round nozzle is also included in the comparison. Compared to a round jet, the jets from the asymmetric nozzles spread only slightly more at subsonic conditions whereas at supersonic conditions, when ‘screech’ occurs, they spread much more. The dynamics of the azimuthal vortical structures of the jet, organized and intensified under the screeching condition, are thought to be responsible for the observed effect at supersonic conditions. Curiously, the jet from a ‘lobed’ nozzle spreads much less at supersonic condition compared to all other cases; this is due to the absence of screech with this nozzle. Screech stages inducing flapping, rather than varicose or helical, flow oscillation cause a more pronounced jet spreading. At subsonic conditions, only a slight increase in jet spreading with the asymmetric nozzles contrasts previous observations by others. The present results show that the spreading of most asymmetric jets is not much different from that of a round jet. This inference is further supported by data from the rectangular orifices. In fact, jets from the orifices with small aspect ratio (AR) exhibit virtually no increase in the spreading. A noticeable increase commences only when AR is larger than about 10. Thus, ‘shear layer perimeter stretching’, achieved with a larger AR for a given cross-sectional area of the orifice, by itself, proves to be a relatively inefficient mechanism for increasing jet spreading. In contrast, the presence of streamwise vortices or ‘natural excitation’ can cause a significant increase – effects that might explain the observations in the previous investigations. Thus far, the biggest increase in jet spreading is observed with the tabs. This is true in the subsonic regime, as well as in the supersonic regime, in spite of the fact that screech is eliminated by the tabs. The characteristic spreading of the tabbed jets is explained by the induced motion of the tab-generated streamwise vortex pairs. The tabs, however, incur thrust loss; the flow blockage and loss in thrust coefficient, vis-à-vis the spreading increase, are evaluated for various configurations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 251 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3