Effect of natural convection on stability of flow in a vertical pipe

Author:

Scheele George F.,Hanratty Thomas J.

Abstract

If water is heated or cooled while flowing through a vertical pipe with a laminar motion, the velocity profile will differ from the parabolic shape for isothermal flow due to density variations in the fluid. If a constant heat flux is used at the wall and if the changes in temperature affect only the density appearing in the gravity term of the equations of motion, a condition is attained far downstream in the heat-transfer section such that there is no further change in the velocity profile. The shape of this fully developed velocity profile depends on the ratio of the heat flux to the flow rate. The stability of flow in an electrically heated pipe 762 diameters long was studied by detecting temperature fluctuations in the effluent. By use of a carefully designed entry and a long isothermal section prior to the heat exchange section, inlet disturbances were eliminated and transition to an unsteady flow resulted from a natural instability of the distorted profiles. It was found that the stability depends primarily on the shape of the velocity profile and only secondarily on the value of the Reynolds number, if at all. For upflow heating the flow first becomes unstable when the velocity profiles develop points of inflexion. Transition to an unsteady flow involves the gradual growth of small disturbances and therefore it is quite possible to have unstable flows without observing transition because the pipe is not long enough for the disturbances to attain a measurable amplitude. For downflow heating the flow instability is associated with separation at the wall. Transition to an unsteady flow is sudden and therefore transition occurs shortly after an unstable flow occurs. It is suggested that a change from a steady symmetrical to a steady unsymmetrical flow occurs in downflow when the profile develops points of inflexion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference10 articles.

1. Scheele, G. F. 1959 M.S. Thesis in Chemical Engineering, University of Illinois, Urbana, Illinois.

2. Hanratty, T. J. , Rosen, E. M. & Kabel, R. L. 1958 Ind. Engng Chem. 50,815.

3. Morton, B. R. 1960 J. Fluid Mech. 8,227.

4. Guerreri, S. A. & Hanna, R. J. 1952 Local heat flux in a vertical duct with free convection in opposition to forced flow.ONR Final Rep., Contract N-ONR-622(01).

5. Hallman, T. M. 1956 Trans. A.S.M.E. 78,1831.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3