Abstract
We extend a recent theory for steady uniform gravity-driven flow of a highly concentrated granular-fluid mixture over an erodible bed between frictional sidewalls. We first include angles of inclination greater than the angle of repose of the particles; then, we introduce a boundary condition for flow over a rigid bumpy bed. We compare the predictions of the resulting theory with the volume flow rates, depths and angles of inclination measured in the experiments on dry and variously saturated flows over rigid and erodible boundaries. Finally, we employ the resulting theory, with the assumption that the flow is shallow, to solve, in an approximate way, for the variation of height and average velocities along a steady non-uniform inclined flow of a granular-fluid mixture that moves over a rigid bumpy bed. The solutions exhibit features of the flow seen in the experiments – for example, a dry bulbous snout in advance of the fluid, whose length increases with increasing number of the particles and that disappears with increasing velocity – for which satisfactory explanations were lacking.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献