High-Reynolds-number turbulence in small apparatus: grid turbulence in cryogenic liquids

Author:

WHITE CHRISTOPHER M.,KARPETIS ADONIOS N.,SREENIVASAN KATEPALLI R.

Abstract

Liquid helium at 4.2 K has a viscosity that is about 40 times smaller than that of water at room temperature, and about 600 times smaller than that of air at atmospheric pressure. It is therefore a convenient fluid for generating in a table-top apparatus turbulent flows at high Reynolds numbers that require large air and water facilities. Here, we produce turbulence behind towed grids in a liquid helium chamber that is 5 cm2 in cross-section at mesh Reynolds numbers of up to 7×105. Liquid nitrogen is intermediate in its viscosity as well as refrigeration demands, and so we also exploit its use to generate towed-grid turbulence up to mesh Reynolds number of about 2×104. In both instances, we map two-dimensional fields of velocity vectors using particle image velocimetry, and compare the data with those in water and air.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Turbulence;2023-09-28

2. Dissipation Rate Estimation in a Highly Turbulent Isotropic Flow Using 2D-PIV;Flow, Turbulence and Combustion;2022-08-13

3. Characterization of a turbulent flow with independent variation of Mach and Reynolds numbers;Experiments in Fluids;2022-02

4. Laws of turbulence decay from direct numerical simulations;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-01-17

5. Multiscale energy budget of inertially driven turbulence in normal and superfluid helium;Physical Review Fluids;2021-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3