Lagrangian frequency spectra of vertical velocity and vorticity in high-Reynolds-number oceanic turbulence

Author:

LIEN REN-CHIEH,D'ASARO ERIC A.,DAIRIKI GEOFFREY T.

Abstract

Lagrangian properties of oceanic turbulent boundary layers were measured using neutrally buoyant floats. Vertical acceleration was computed from pressure (depth) measured on the floats. An average vertical vorticity was computed from the spin rate of the float. Forms for the Lagrangian frequency spectra of acceleration, ϕa(ω), and the Lagrangian frequency spectrum of average vorticity are found using dimension analysis. The flow is characterized by a kinetic energy dissipation rate, ε, and a large-eddy frequency, ω0. The float is characterized by its size. The proposed non-dimensionalization accurately collapses the observed spectra into a common form. The spectra differ from those expected for perfect Lagrangian measurements over a substantial part of the measured frequency range owing to the finite size of the float. Exact theoretical forms for the Lagrangian frequency spectra are derived from the corresponding Eulerian wavenumber spectra and a wavenumber–frequency distribution function used in previous numerical simulations of turbulence. The effect of finite float size is modelled as a spatial average. The observed non-dimensional acceleration and vorticity spectra agree with these theoretical predictions, except for the high-frequency part of the vorticity spectrum, where the details of the float behaviour are important, but inaccurately modelled. A correction to the exact Lagrangian acceleration spectra due to measurement by a finite-sized float is thus obtained. With this correction, a frequency range extending from approximately one decade below ω0 to approximately one decade into the inertial subrange can be resolved by the data. Overall, the data are consistent with the proposed transformation from the Eulerian wavenumber spectrum to the Lagrangian frequency spectrum. Two parameters, ε and ω0, are sufficient to describe Lagrangian spectra from several different oceanic turbulent flows. The Lagrangian Kolmogorov constant for acceleration, βa≡ϕa/ε, has a value between 1 and 2 in a convectively driven boundary layer. The analysis suggests a Lagrangian frequency spectrum for vorticity that is white at all frequencies in the inertial subrange and below, and a Lagrangian frequency spectrum for energy that is white below the large-eddy scale and has a slope of −2 in the inertial subrange.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3