The role of angular momentum conservation in homogeneous turbulence

Author:

DAVIDSON P. A.

Abstract

Loitsyanky's integral I = − ∫ r2uu′〉dr is known to be approximately conserved in certain types of fully developed, isotropic turbulence, and its near conservation controls the rate of decay of kinetic energy. Landau suggested that this integral is related to the angular momentum H = ∫ (x × u)dV of some large volume V of the turbulence, according to the expression I = 〈H2〉/V. He also suggested that the approximate conservation of I is related to the principle of conservation of angular momentum. However, Landau's analysis can be criticized because, formally, it applies only to inhomogeneous turbulence evolving in a closed domain. So how are we to interpret the near conservation of I? And what is its relationship, if any, to angular momentum conservation? We show that the key to extending Landau's analysis to strictly homogeneous turbulence is to rewrite Loitsyansky's integral in terms of the vector potential of the velocity field, i.e. I = 6 ∫〈AA′〉dr, where × A = u. This yields I = 6〈[∫VAdV]2〉/V for any large spherical volume V of radius R. Crucially, J = 3∫VAdV can be rewritten as the weighted integral of the angular momentum density throughout all space. This fundamentally changes the way in which we interpret the dynamical behaviour of I. For example, we show that the conservation of 〈J2〉/V, and hence of I, which occurs when the long-range correlations are weak, is a direct consequence of the decorrelation of the flux of angular momentum out through a spherical control surface S and the local angular momentum in the vicinity of S. Thus, within the framework of strictly homogeneous turbulence, we provide the first self-consistent interpretation of Loitsyanky's integral in terms of angular momentum conservation. We also show that essentially the same ideas carry over to certain types of anisotropic turbulence, such as magnetohydrodynamic (MHD), rotating and stratified turbulence. This is important because conservation of angular momentum, which manifests itself in the form of a Loitsyansky-like invariant, places a fundamental restriction on the way in which the integral scales can evolve in such turbulence. This, in turn, controls the rate of decay of energy. We illustrate this by deriving new decay laws for MHD and stratified turbulence. The MHD decay laws are consistent with the available numerical evidence, but further study is required to verify, or otherwise, the predictions for stratified turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3