Coherent structures near the wall in a turbulent channel flow

Author:

Jeong J.,Hussain F.,Schoppa W.,Kim J.

Abstract

Coherent structures (CS) near the wall (i.e.y+ ≤ 60) in a numerically simulated turbulent channel flow are educed using a conditional sampling scheme which extracts the entire extent of dominant vortical structures. Such structures are detected from the instantaneous flow field using our newly developed vortex definition (Jeong & Hussain 1995) - a region of negativeλ2, the second largest eigenvalue of the tensorSikSkj+ ΩikΩkj- which accurately captures the structure details (unlike velocity-, vorticity- or pressure-based eduction). Extensive testing has shown thatλ2correctly captures vortical structures, even in the presence of the strong shear occurring near the wall of a boundary layer. We have shown that the dominant near-wall educed (i.e. ensemble averaged after proper alignment) CS are highly elongated quasi-streamwise vortices; the CS are inclined 9° in the vertical (x, y)-plane and tilted ±4° in the horizontal (x, z)-plane. The vortices of alternating sign overlap inxas a staggered array; there is no indication near the wall of hairpin vortices, not only in the educed data but also in instantaneous fields. Our model of the CS array reproduces nearly all experimentally observed events reported in the literature, such as VITA, Reynolds stress distribution, wall pressure variation, elongated low-speed streaks, spanwise shear, etc. In particular, a phase difference (in space) between streamwise and normal velocity fluctuations created by CS advection causes Q4 ('sweep’) events to dominate Q2 ('ejection’) and also creates counter-gradient Reynolds stresses (such as Ql and Q3 events) above and below the CS. We also show that these effects are adequately modelled by half of a Batchelor's dipole embedded in (and decoupled from) a background shearU(y). The CS tilting (in the (x, z)-plane) is found to be responsible for sustaining CS through redistribution of streamwise turbulent kinetic energy to normal and spanwise components via coherent pressure-strain effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference45 articles.

1. The structure of the large eddies in fully developed turbulent shear flows. Part 2. The plane wake

2. Turbulent boundary layer structure: progress, status and challenges;Kline;Proc. IUTAM Symp. Struct, of Turbulence and Drag Reduction, Zurich.,1989

3. Structure of turbulent shear flows;Hussain;Center for Turbulence Research Report CTR-SS1,1987

4. Core dynamics on a vortex column

Cited by 526 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3