Responses of Bingham-plastic muddy seabed to a surface solitary wave

Author:

CHAN I-CHI,LIU PHILIP L.-F.

Abstract

In this paper, we investigate the dynamics of muddy-seabed motions induced by a surface solitary wave. The muddy seabed is characterized as Bingham-plastic mud. We focus our attention on the situations where the horizontal scale of the wave-induced mud flow is much larger than the vertical scale. The thickness of the mud layer is also assumed to be much smaller than the water depth above. With these simplifications, the dynamic pressure in the mud column remains a constant and the vertical displacement of the water–mud interface is negligible. The horizontal gradient of the wave-induced dynamic pressure along the water–seabed interface drives the motions in the mud bed. For a Bingham-plastic muddy seafloor, the mud moves either like a solid (plug flow) or like a viscous fluid (shear flow) depending on whether the magnitude of shear stress is in excess of the yield stress. Velocities inside these two different flow regimes and the location(s) of the yield surface(s) vary in time as functions of water–mud interfacial pressure gradient and the properties of the Bingham-plastic mud. A semi-analytical approach is developed in this paper to analyse the motions inside the mud bed under a surface solitary wave loading. Three possible scenarios are discussed to illustrate the complexity of the seafloor responses. The formula for the damping rate caused by the energy dissipation inside the muddy seabed is also derived. Using realistic values of the physical parameters, the present results for damping rate agree qualitatively with the available field observations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Viscous flows in a muddy seabed induced by a solitary wave

2. Water waves over a muddy bed: a two-layer Stokes' boundary layer model

3. Mud Flow— Slow and Fast

4. Mudbanks of the southwest coast of India I: Wave characteristics;Mathew;J. Coastal Res.,1995

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3