Author:
DE B. ALVES LEONARDO S.,KELLY ROBERT E.,KARAGOZIAN ANN R.
Abstract
The dominant non-dimensional parameter for isodensity transverse jet flow is the mean jet-to-crossflow velocity ratio,R. In Part 1 (Megerianet al.,J. Fluid Mech., vol. 593, 2007, p. 93), experimental results are presented for the behaviour of transverse-jet near-field shear-layer instabilities for velocity ratios in the range 1 <R≤ 10. A local linear stability analysis is presented in this paper for the subrangeR>4, using two different base flows for the transverse jet. The first analysis assumes the flow field to be described by a modified version of the potential flow solution of Coelho & Hunt (J. Fluid Mech., vol. 200, 1989, p. 95), in which the jet is enclosed by a vortex sheet. The second analysis assumes a continuous velocity model based on the same inviscid base flow; this analysis is valid for the larger values of Strouhal number expected to be typical of the most unstable disturbances, and allows prediction of a maximum spatial growth rate for the disturbances. In both approaches, results are obtained by expanding in inverse powers ofRso that the free-jet results are obtained asR→∞. The results from both approaches agree in the moderately low-frequency regime. Maximum spatial growth rates and associated Strouhal numbers extracted from the second approach both increase with decreasing velocity ratioR, in agreement with the experimental results from Part 1 in the range 4<R≤10. The nominally axisymmetric mode is found to be the most unstable mode in the transverse-jet shear-layer near-field region, upstream of the end of the potential core. The overall agreement of theoretical and experimental results suggests that convective instability occurs in the transverse-jet shear layer for jet-to-crossflow velocity ratios above 4, and that the instability is strengthened asRis decreased.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献