General stability conditions for zonal flows in a one-layer model on the β-plane or the sphere

Author:

Ripa P.

Abstract

Sufficient stability conditions are derived for a zonal flow on the β-plane or the sphere. Two conditions guarantee both shear stability (to perturbations with vanishing zonal average) and inertial stability (to longitude-independent perturbations). These conditions are not restricted to normal-mode disturbances, and are derived without making use of the quasi-geostrophic approximation. The main limitation of the model is to have only one layer.On the β-plane, the conditions are: (i) that the product of the meridional gradient of potential vorticity and the difference between an arbitrary constant and the zonal velocity be everywhere non-negative; and (ii) that the absolute value of this difference be nowhere larger than the local phase speed of long gravity waves. Inertial stability is independently assured if the Cariolis parameter and the potential vorticity are everywhere of the same sign (this well-known condition can be easily violated near the equator, but the flow may nonetheless be stable).If the meridional gradient of potential vorticity has everywhere the same sign, then conditions (i) and (ii) can be shown to be consequences of the conservation of a total pseudo-energy E0 and pseudomomentum P0, defined so that their lowest-order contribution is quadratic in the deviation from the fundamental state (even in the case that the perturbation is longitude-independent). Thus, if there exists a value of α such that the integral of E0 − αP0 is positive-definite, then the flow is stable. In this case, the stability conditions are valid for small, rather than infinitesimal, perturbations.The parameters of stable flows, as guaranteed by these conditions, are investigated for the family of Gaussian jets centred at the equator; both the cases of an unbounded ocean and a semi-infinite ocean, poleward from a zonal wall, are considered. Easterlies with the width of a Kelvin wave and westerlies with that width or wider may be unstable, even though the gradient of potential vorticity is positive for any strength of the jet.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference31 articles.

1. Semtner, A. J. & Holland, W. R. 1980 Numerical simulation of equatorial ocean circulation. Part I: A basic case in turbulent equilibrium.J. Phys. Oceanogr. 10,667–693.

2. Hughes, R. L. 1981 On inertial instability of the equatorial undercurrent Tellus 33,291–300.

3. Griffiths, R. W. , Killworth, P. D. & Stern, M. E. 1982 Ageostrophic instability of ocean currents J. Fluid Mech. 117,343–377.

4. Busse, F. H. & Chen, W. L. 1981b Shear flow instabilities in a rotating system.Geophys. Astrophys. Fluid Dyn. 17,199–214.

5. Dunkerton, T. J. 1981 On the inertial stability oif the equatorial middle atmosphere J. Atmos. Sci. 38,2354–2364.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3