Curvature- and rotation-induced instabilities in channel flow

Author:

Matsson O. John E.,Alfredsson P. Henrik

Abstract

In a curved channel streamwise vortices, often called Dean vortices, may develop above a critical Reynolds number owing to centrifugal effects. Similar vortices can occur in a rotating plane channel due to Coriolis effects if the axis of rotation is normal to the mean flow velocity and parallel to the walls. In this paper the flow in a curved rotating channel is considered. It is shown from linear stability theory that there is a region for which centrifugal effects and Coriolis effects almost cancel each other, which increases the critical Reynolds number substantially. The flow visualization experiments carried out show that a complete cancellation of Dean vortices can be obtained for low Reynolds number. The rotation rate for which this occurs is in close agreement with predictions from linear stability theory. For curved channel flow a secondary instability of travelling wave type is found at a Reynolds number about three times higher than the critical one for the primary instability. It is shown that rotation can completely cancel the secondary instability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference20 articles.

1. Ligrani, P. M. & Niver, R. D. 1988 Flow visualization of Dean vortices in a curved channel with 40 to 1 aspect ratio.Phys. Fluids 31,3605.

2. Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability .Cambridge University Press.

3. Savas, ö. 1985 On flow visualization using reflective flakes.J. Fluid Mech. 152,235.

4. Schlichting, H. 1979 Boundary Layer Theory ,7th edn. McGraw-Hill.

5. Craik, A. D. D. 1985 Wave Interactions and Fluid Flows .Cambridge University Press.

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3