Beach-face evolution in the swash zone

Author:

KELLY DAVID MATTHEW,DODD NICK

Abstract

We investigate swash on an erodible beach using the one-dimensional shallow-water equations fully coupled to a bed-evolution (Exner) equation. In particular, the dam-break/bore-collapse initial condition of Shen & Meyer (J. Fluid Mech., vol. 16, 1963, pp. 113–125) and Peregrine & Williams (J. Fluid Mech., vol. 440, 2001, pp. 391–399) is investigated using a numerical model based on the method of characteristics. A sediment-transport formula (cubic in velocityu:Au3) is used here; this belongs to a family of sediment-transport formulae for which Pritchard & Hogg (Coastal Engng, vol. 52, 2005, pp. 1–23) showed that net sediment transport under the Shen & Meyer (1963) bore collapse is offshore throughout the swash zone when a non-erodible bed is considered. It is found that full coupling with the beach, although still resulting in the net offshore transport of sediment throughout the swash zone, leads to a large reduction in the net offshore transport of sediment from the beach face. This is particularly true for the upper third of the swash zone. Moreover, in contradistinction to swash flows over non-erodible beds, flows over erodible beaches are unique to the bed mobility and porosity under consideration; this has very important implications for run-up predictions. The conclusion is that it is essential to consider full coupling of water and bed motions (i.e. full morphodynamics) in order to understand and predict sediment transport in the swash, regardless of other physical effects (e.g. turbulence, infiltration, pre-suspended sediment, etc.).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3