Author:
Nir Avinoam,Acrivos Andreas
Abstract
Formal expressions are derived for the effective thermal conductivity Kij of randomly dispersed suspensions undergoing shear. These are then evaluated for the cases of dilute suspensions of cylinders and of spheres when the bulk motion is a simple shear, the Péclet number Pe is large, and the particle Reynolds number is small enough for inertia effects to be negligible. It is shown that as Pe → ∞ the presence of shear can significantly affect the O(ϕ) contribution to Kij (ϕ being the volume fraction of the solids), which becomes independent of k, the thermal conductivity of the suspended material. This results from the presence of regions of closed streamlines surrounding each particle which, for sufficiently large Pe, attain an isothermal state and therefore act as regions of infinite conductivity.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献