Instability of a gravity-modulated fluid layer with surface tension variation

Author:

SKARDA J. RAYMOND LEE

Abstract

Gravity modulation of an unbounded fluid layer with surface tension variations along its free surface is investigated. The stability of such systems is often characterized in terms of the wavenumber, α and the Marangoni number, Ma. In (α, Ma) parameter space, modulation has a destabilizing effect on the unmodulated neutral stability curve for large Prandtl number, Pr, and small modulation frequency, Ω, while a stabilizing effect is observed for small Pr and large Ω. As Ω → ∞ the modulated neutral stability curves approach the unmodulated neutral stability curve. At certain values of Pr and Ω, multiple minima are observed and the neutral stability curves become highly distorted. Closed regions of subharmonic instability are also observed. In (1/Ω, g1Ra)-space, where g1 is the relative modulation amplitude, and Ra is the Rayleigh number, alternating regions of synchronous and subharmonic instability separated by thin stable regions are observed. However, fundamental differences between the stability boundaries occur when comparing the modulated Marangoni–Bénard and Rayleigh–Bénard problems. Modulation amplitudes at which instability tongues occur are strongly influenced by Pr, while the fundamental instability region is weakly affected by Pr. For large modulation frequency and small amplitude, empirical relations are derived to determine modulation effects. A one-term Galerkin approximation was also used to reduce the modulated Marangoni–Bénard problem to a Mathieu equation, allowing qualitative stability behaviour to be deduced from existing tables or charts, such as Strutt diagrams. In addition, this reduces the parameter dependence of the problem from seven transport parameters to three Mathieu parameters, analogous to parameter reductions of previous modulated Rayleigh–Bénard studies. Simple stability criteria, valid for small parameter values (amplitude and damping coefficients), were obtained from the one-term equations using classical method of averaging results.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3