Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth

Author:

STONE HOWARD A.,AJDARI ARMAND

Abstract

The motion of membrane-bound objects is important in many aspects of biology and physical chemistry. A hydrodynamic model for this Fconfiguration was proposed by Saffman & Delbrück (1975) and here it is extended to study the translation of a disk-shaped object in a viscous surface film overlying a fluid of finite depth H. A solution to the flow problem is obtained in the form of a system of dual integral equations that are solved numerically. Results for the friction coefficient of the object are given for a complete range of the two dimensionless parameters that describe the system: the ratio of the sublayer (η) to membrane (ηm) viscosities, ΛRmh (where R and h are the object radius and thickness of the surface film, respectively), and the sublayer thickness ratio, H/R. Scaling arguments are presented that predict the variation of the friction coefficient based upon a comparison of the different length scales that appear in the problem: the geometric length scales H and R, the naturally occurring length scale [lscr ]mmh/η, and an intermediate length scale [lscr ]H= (ηmhH/η)1/2. Eight distinct asymptotic regimes are identified based upon the different possible orderings of these length scales for each of the two limits Λ[Lt ]1 and Λ[Gt ]1. Moreover, the domains of validity of available approximations are established. Finally, some representative surface velocity fields are given and the implication of these results for the characterization of hydrodynamic interactions among membrane-bound proteins adjacent to a finite-depth sublayer is discussed briefly.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrodynamics of a disk in a thin film of weakly nematic fluid subject to linear friction;Journal of Physics: Condensed Matter;2024-08-02

2. Stability of a dispersion of elongated particles embedded in a viscous membrane;Journal of Fluid Mechanics;2024-05-16

3. Hydrodynamic efficiency limit on a Marangoni surfer;Journal of Fluid Mechanics;2024-05-10

4. Line Tension in a Thick Soap Film;Physical Review Letters;2024-01-30

5. The drag of a filament moving in a supported spherical bilayer;Journal of Fluid Mechanics;2024-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3