The motion of a large gas bubble rising through liquid flowing in a tube

Author:

Collins R.,Moraes F. F. De,Davidson J. F.,Harrison D.

Abstract

The theory presented here describes the motion of a large gas bubble rising through upward-flowing liquid in a tube. The basis of the theory is that the liquid motion round the bubble is inviscid, with an initial distribution of vorticity which depends on the velocity profile in the liquid above the bubble. Approximate solutions are given for both laminar and turbulent velocity profiles and have the form \begin{equation} U_s = U_c+(gD)^{\frac{1}{2}}\phi(U_c/(gD)^{\frac{1}{2}}), \end{equation}Us being the bubble velocity, Uc the liquid velocity at the tube axis, g the acceleration due to gravity, and D the tube diameter; ϕ indicates a functional relationship the form of which depends upon the shape of the velocity profile. With a turbulent velocity profile, a good approximation to (1) which is suitable for many practical purposes is \begin{equation} U_s = U_s + U_{s0}, \end{equation}Us0 being the bubble velocity in stagnant liquid. Published data for turbulent flow are known to agree with (2), so that in this case the theory supports a well-known empirical result. Our laminar flow experiments confirm the validity of (1) for low liquid velocities.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. Hawthorne, W. R. 1967 In Fluid Mechanics of Internal Flow (ed. G. Sovran ),pp.239–269.Elsevier.

2. Townsend, A. A. 1976 The Structure of Turbulent Shear Flow , 2nd edn,p.150.Cambridge University Press.

3. Moraes, F. F. De 1977 Gas slugs in liquids and three-phase fluidisation. Ph.D. dissertation, University of Cambridge.

4. Wallis, G. B. 1969 One Dimensional Two-Phase Flow ,pp.282–314.McGraw-Hill.

5. Lamb, H. 1932 Hydrodynamics ,p.245.Cambridge University Press.

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3