Kicked Burgers turbulence

Author:

BEC J.,FRISCH U.,KHANIN K.

Abstract

Burgers turbulence subject to a force f(x, t) = [sum ]jfj(x)δ(ttj), where tj are 'kicking times' and the 'impulses' fj(x) have arbitrary space dependence, combines features of the purely decaying and the continuously forced cases. With large-scale forcing this ‘kicked’ Burgers turbulence presents many of the regimes proposed by E et al. (1997) for the case of random white-noise-in-time forcing. It is also amenable to efficient numerical simulations in the inviscid limit, using a modification of the fast Legendre transform method developed for decaying Burgers turbulence by Noullez & Vergassola (1994). For the kicked case, concepts such as ‘minimizers’ and ‘main shock’, which play crucial roles in recent developments for forced Burgers turbulence, become elementary since everything can be constructed from simple two-dimensional area-preserving Euler–Lagrange maps.The main results are for the case of identical deterministic kicks which are periodic and analytic in space and are applied periodically in time. When the space integrals of the initial velocity and of the impulses vanish, it is proved and illustrated numerically that a space- and time-periodic solution is achieved exponentially fast. In this regime, probabilities can be defined by averaging over space and time periods. The probability densities of large negative velocity gradients and of (not-too-large) negative velocity increments follow the power law with −7/2 exponent proposed by E et al. (1997) in the inviscid limit, whose existence is still controversial in the case of white-in-time forcing. This power law, which is seen very clearly in the numerical simulations, is the signature of nascent shocks (preshocks) and holds only when at least one new shock is born between successive kicks.It is shown that the third-order structure function over a spatial separation Δx is analytic in Δx although the velocity field is generally only piecewise analytic (i.e. between shocks). Structure functions of order p ≠ 3 are non-analytic at Δx = 0. For even p there is a leading-order term proportional to [mid ]Δx[mid ] and for odd p > 3 the leading-order term ∝Δx has a non-analytic correction ∝Δx[mid ]Δx[mid ] stemming from shock mergers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3