Author:
YAN HONGMEI,LIU YUMING,KOMINIARCZUK JAKUB,YUE DICK K. P.
Abstract
The dynamics of the air cavity created by vertical water entry of a three-dimensional body is investigated theoretically, computationally and experimentally. The study is focused in the range of relatively low Froude numbers, Fr ≡ V(gD)−1/2 ≤ O(10) (where V is the dropping velocity of the body, D its characteristic dimension and g the gravitational acceleration), when the inertia and gravity effects are comparable. To understand the physical processes involved in the evolution of cavity, we conduct laboratory experiments of water entry of freely dropping spheres. A matched asymptotic theory for the description of the cavity dynamics is developed based on the slender-body theory in the context of potential flow. Direct comparisons with experimental data show that the asymptotic theory properly captures the key physical effects involved in the development of the cavity, and in particular gives a reasonable prediction of the maximum size of the cavity and the time of cavity closure. Due to the inherent assumption in the asymptotic theory, it is incapable of accurately predicting the flow details near the free surface and the body, where nonlinear free surface and body boundary effects are important. To complement the asymptotic theory, a fully nonlinear numerical study using an axisymmetric boundary integral equation is performed. The numerically obtained dependencies of the cavity height and closure time on Froude number and body geometry are in excellent agreement with available experiments.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献