Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow

Author:

AGGARWAL NISHITH,SARKAR KAUSIK

Abstract

The deformation of a Newtonian/viscoelastic drop suspended in a viscoelastic fluid is investigated using a three-dimensional front-tracking finite-difference method. The viscoelasticity is modelled using the Oldroyd-B constitutive equation. Matrix viscoelasticity affects the drop deformation and the inclination angle with the flow direction. Numerical predictions of these quantities are compared with previous experimental measurements using Boger fluids. The elastic and viscous stresses at the interface, polymer orientation, and the elastic and viscous forces in the domain are carefully investigated as they affect the drop response. Significant change in the drop inclination with increasing viscoelasticity is observed; this is explained in terms of the first normal stress difference. A non-monotonic change – a decrease followed by an increase – in the steady-state drop deformation is observed with increasing Deborah number (De) and explained in terms of the competition between increased localized polymer stretching at the drop tips and the decreased viscous stretching due to change in drop orientation angle. The transient drop orientation angle is found to evolve on the polymer relaxation time scale for highDe. The breakup of a viscous drop in a viscoelastic matrix is inhibited for smallDe, and promoted at higherDe. Polymeric to total viscosity ratio β was seen to affect the result through the combined parameter βDeindicating a dominant role of the first normal stress difference. A viscoelastic drop in a viscoelastic matrix with matched relaxation time experiences less deformation compared to the case when one of the phases is viscous; but the inclination angle assumes an intermediate value between two extreme cases. Increased drop phase viscoelasticity compared to matrix phase leads to decreased deformation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3