Drift instability of standing Faraday waves

Author:

MARTÍN ELENA,MARTEL CARLOS,VEGA JOSÉ M.

Abstract

We consider the weakly nonlinear evolution of the Faraday waves produced in a vertically vibrated two-dimensional liquid layer, at small viscosity. It is seen that the surface wave evolves to a drifting standing wave, namely a wave that is standing in a moving reference frame. This wave is determined up to a spatial phase, whose calculation requires consideration of the associated mean flow. This is just the streaming flow generated in the boundary layer attached to the lower plate supporting the liquid. A system of equations is derived for the coupled slow evolution of the spatial phase and the streaming flow. These equations are numerically integrated to show that the simplest reflection symmetric steady state (the usual array of counter-rotating eddies below the surface wave) becomes unstable for realistic values of the parameters. The new states include limit cycles (the array of eddies oscillating laterally), drifted standing waves (patterns that are standing in a uniformly propagating reference frame) and some more complex attractors.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traveling Faraday waves;Physical Review Fluids;2023-11-16

2. Drifting Faraday patterns under localised driving;Communications Physics;2023-04-07

3. Asymmetric vortexes induced traveling drop on an oscillatory liquid bath;Physics of Fluids;2019-10-01

4. Faraday waves over a permeable rough substrate;Physical Review E;2019-05-15

5. OSCILLATIONS AND PARAMETRIC INSTABILITY OF A CYLINDRICAL DROP OF A LOW-VISCOUS LIQUID;International Journal of Fluid Mechanics Research;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3