Strongly nonlinear convection cells in a rapidly rotating fluid layer: the tilted f-plane

Author:

JULIEN KEITH,KNOBLOCH EDGAR

Abstract

Investigation of the linear stability problem for rapidly rotating convection on an f-plane has revealed the existence of two distinct scales in the vertical structure of the critical eigenfunctions: a small length scale whose vertical wavenumber kz is comparable with the large horizontal wavenumber k⊥ selected at onset, and a large-scale modulation which forms an envelope on the order of the layer depth d. The small-scale structure in the vertical results from a geostrophic balance imposed by the Taylor–Proudman constraint. This primary balance forces rotational alignment and confines fluid motions to planes perpendicular to the rotation axis. For convective transport in the vertical this constraint must be relaxed. This is achieved by molecular dissipation which allows weak upward (downward) spiralling of hot (cold) fluid elements across the Taylor–Proudman planes and results in a large-scale vertical modulation of the Taylor columns.In the limit of fast rotation (i.e. large Taylor number) a multiple-scales analysis leads to the determination of a critical Rayleigh number as a function of wavenumber, roll orientation and the tilt angle of the f-plane. The corresponding critical eigenfunction represents the core solution; matching to passive Ekman boundary layers is required for a complete solution satisfying boundary conditions.An extension of this analysis, introduced by Bassom & Zhang (1994), is used to describe strongly nonlinear two-dimensional convection, characterized by significant departures of the mean thermal field from its conduction profile. The analysis requires the solution of a nonlinear eigenvalue problem for the Nusselt number (for steady convection) and the Nusselt number and oscillation frequency (for the overstable problem). The solutions of this problem are used to calculate horizontal and vertical heat fluxes, as well as Reynolds stresses, as functions of both the latitude and roll orientation in the horizontal, and these are used to calculate self-consistently north–south and east–west mean flows. These analytical predictions are in good agreement with the results of three-dimensional simulations reported by Hathaway & Somerville (1983).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3