Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc [Gt ] 1

Author:

Buch Kenneth A.,Dahm Werner J. A.

Abstract

We present results from an experimental investigation into the fine-scale structure associated with the mixing of a dynamically passive conserved scalar quantity on the inner scales of turbulent shear flows. The present study was based on highly resolved two- and three-dimensional spatio-temporal imaging measurements. For the conditions studied, the Schmidt number (Scv/D) was approximately 2000 and the local outerscale Reynolds number (Reσ≡ uσ/v) ranged from 2000 to 10000. The resolution and signal quality allow direct differentiation of the measured scalar field ζ(x, t) to give the instantaneous scalar energy dissipation rate field (Re Sc)−1 ∇ζċ∇ζ(x, t). The results show that the fine-scale structure of the scalar dissipation field, when viewed on the inner-flow scales for Sc ≡ 1, consists entirely of thin strained laminar sheet-like diffusion layers. The internal structure of these scalar dissipation sheets agrees with the one-dimensional self-similar solution for the local strain–diffusion competition in the presence of a spatially uniform but time-varying strain rate field. This similarity solution also shows that line-like structures in the scalar dissipation field decay exponentially in time, while in the vorticity field both line-like and sheet-like structures can be sustained. This sheet-like structure produces a high level of intermittency in the scalar dissipation field – at these conditions approximately 4% of the flow volume accounts for nearly 25% of the total mixing achieved. The scalar gradient vector field ∇ζ(x, t) for large Sc is found to be nearly isotropic, with a weak tendency for the dissipation sheets to align with the principal axes of the mean flow strain rate tensor. Joint probability densities of the conserved scalar and scalar dissipation rate have a shape consistent with this canonical layer-like fine-scale structure. Statistics of the conserved scalar and scalar dissipation rate fields are found to demonstrate similarity on inner-scale variables even at the relatively low Reynolds numbers investigated.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3