Axially invariant laminar flow in helical pipes with a finite pitch

Author:

Liu Shijie,Masliyah Jacob H.

Abstract

Steady axially invariant (fully developed) incompressible laminar flow of a Newtonian fluid in helical pipes of constant circular cross-section with arbitrary pitch and arbitrary radius of coil is studied. A loose-coiling analysis leads to two dominant parameters, namely Dean number, Dn = Reλ½, and Germano number, Gn = Reη, where Re is the Reynolds number, λ is the normalized curvature ratio and η is the normalized torsion. The Germano number is embedded in the body-centred azimuthal velocity which appears as a group in the governing equations. When studying Gn effects on the helical flow in terms of the secondary flow pattern or the secondary flow structure viewed in the generic (non-orthogonal) coordinate system of large Dn, a third dimensionless group emerges, γ = η/(λDn)½. For Dn < 20, the group γ* = Gn Dn-2 = η/(λRe) takes the place of γ.Numerical simulations with the full Navier-Stokes equations confirmed the theoretical findings. It is revealed that the effect of torsion on the helical flow can be neglected when γ ≤ 0.01 for moderate Dn. The critical value for which the secondary flow pattern changes from two vortices to one vortex is γ* > 0.039 for Dn < 20 and γ > 0.2 for Dn ≥ 20. For flows with fixed high Dean number and A, increasing the torsion has the effect of changing the relative position of the secondary flow vortices and the eventual formation of a flow having a Poiseuille-type axial velocity with a superimposed swirling flow. In the orthogonal coordinate system, however, the secondary flow generally has two vortices with sources and sinks. In the small-γ limit or when Dn is very small, the secondary flow is of the usual two-vortex type when viewed in the orthogonal coordinate system. In the large-γ limit, the appearance of the secondary flow in the orthogonal coordinate system is also two-vortex like but its orientation is inclined towards the upper wall. The flow friction factor is correlated to account for Dn, A and γ effects for Dn ≤ 5000 and γ < 0.1.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference30 articles.

1. Mori, Y. & Nakayama, W. 1965 Study on forced convective heat transfer in curved pipes.Intl J. Heat Mass Transfer 8,67–82.

2. Wang, C. Y. 1981 On the low-Reynolds-number flow in a helical pipe.J. Fluid Mech. 108,185–194.

3. Ito, H. 1969 Laminar flow in curved pipes. Z. Angew. Math. Mech. 11,653–663.

4. Barua, S. N. 1963 On secondary flow in stationary curved pipes.Q. J. Mech. Appl. Maths 16,61–77.

5. Chadwick, R. S. 1985 Slow viscous flow inside a torus - the resistance of small tortuous blood vessels.Q. Appl. Maths 43,317–323.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3