A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion

Author:

Ganatos Peter,Pfeffer Robert,Weinbaum Sheldon

Abstract

Exact solutions are presented for the three-dimensional creeping motion of a sphere of arbitrary size and position between two plane parallel walls for the following conditions: (a) pure translation parallel to two stationary walls, (b) pure rotation about an axis parallel to the walls, (c) Couette flow past a rigidly held sphere induced by the motion of one of the boundaries and (d) two-dimensional Poiseuille flow past a rigidly held sphere in a channel. The combined analytic and numerical solution procedure is the first application for bounded flow of the three-dimensional boundary collocation theory developed in Ganatos, Pfeffer & Weinbaum (1978). The accuracy of the solution technique is tested by detailed comparison with the exact bipolar co-ordinate solutions of Goldman, Cox & Brenner (1967a, b) for the drag and torque on a sphere translating parallel to a single plane wall, rotating adjacent to the wall or in the presence of a shear field. In all cases, the converged collocation solutions are in perfect agreement with the exact solutions for all spacings tested. The new collocation solutions have also been used to test the accuracy of existing solutions for the motion of a sphere parallel to two walls using the method of reflexions technique. The first-order reflexion theory of Ho & Leal (1974) provides reasonable agreement with the present results for the drag when the sphere is five or more radii from both walls. At closer spacings first-order reflexion theory is highly inaccurate and predicts an erroneous direction for the torque on the sphere for a wide range of sphere positions. Comparison with the classical higher-order method of reflexions solutions of Faxen (1923) reveals that the convergence of the multiple reflexion series solution is poor when the sphere centre is less than two radii from either boundary.Solutions have also been obtained for the fluid velocity field. These solutions show that, for certain wall spacings and particle positions, a separated region of closed streamlines forms adjacent to the sphere which reverses the direction of the torque acting on a translating sphere.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference14 articles.

1. Halow, J. S. & Wills, G. B. 1970 A.I.Ch.E. J. 16,281.

2. Lamb, H. 1945 Hydrodynamics ,6th edn.Dover.

3. Ganatos, P. , Weinbaum, S. & Pfeffer, R. 1980 J. Fluid Mech. 99,739–753.

4. Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics ,2nd edn Noordhoff.

5. Faxen, H. 1923 Arkiv. Mat. Astron. Fys. 17, no. 27.

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3