The wall region in turbulent shear flow

Author:

Wallace James M.,Eckelmann Helmut,Brodkey Robert S.

Abstract

Hot-film measurements in a fully developed channel flow have been made in an attempt to gain more insight into the process of Reynolds stress production. The background for this effort is the observation of a certain sequence of events (deceleration, ejection and sweep) in the wall region of turbulent flows by Corino (1965) and Corino & Brodkey (1969). The instantaneous product signal uv was classified according to the sign of its components u and v, and these classified portions were then averaged to obtain their contributions to the Reynolds stress $-\rho\overline{uv} $. The signal was classified into four categories; the two main ones were that with u negative and v positive, which can be associated with the ejection-type motion of Corino & Brodkey (1969), and that with u positive and v negative, associated with the sweep-type motion. It was found that over the wall region investigated, 3·5 [les ] y [les ] 100, these two types of motion give rise to a stress considerably greater than the total Reynolds stress. Two other types of motion, (i) u negative, v negative, corresponding to low-speed fluid deflected towards the wall, and (ii) u positive, v positive, corresponding to high-speed fluid reflected outwards from the wall, were found to account for the ‘excess’ stress produced by the first two categories, which give contributions of opposite sign.The autocorrelations of the classified portions of uv were obtained to determine the relative time scales of these four types of motion. The positive stress producing motions (u < 0, v > 0 and u > 0, v < 0) were found to have significantly larger time scales than the negative stress producing motions (u < 0, v < 0 and u > 0, v > 0). It was further surmised that turbulent energy dissipation is associated with the Reynolds stress producing motions, since these result in localized shear regions in which the dissipation is several orders of magnitude greater than the average dissipation at the wall.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference10 articles.

1. Reighardt, H. 1938 Naturwissenschaften,24/25,404.

2. Corino, E. R. 1965 Ph.D. dissertation,The Ohio State University.

3. Townsend, A. A. 1956 The Structure of Turbulent Shear Flow ,pp.216–217.Cambridge University Press.

4. Eckelmann, H. 1970 Mitteilungen MPI für Strömungsforschung und der AVA, Göttingen, no. 48.

5. Laufer, J. 1954 N.A.C.A. Rep. no. 1174.

Cited by 668 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3