Non-isothermal dispersed phase of particles in turbulent flow

Author:

PANDYA R. V. R.,MASHAYEK F.

Abstract

In this paper we consider, for modelling and simulation, a non-isothermal turbulent flow laden with non-evaporating spherical particles which exchange heat with the surrounding fluid and do not collide with each other during the course of their journey under the influence of the stochastic fluid drag force. In the modelling part of this study, a closed kinetic or probability density function (p.d.f.) equation is derived which describes the distribution of position x, velocity v, and temperature θ of the particles in the flow domain at time t. The p.d.f. equation represents the transport of the ensemble-average (denoted by 〈 〉) phase-space density 〈W(x, v, θ, t)〉. The process of ensemble averaging generates unknown terms, namely the phase-space diffusion current j = βvuW〉 and the phase-space heat current h = βθtW〉, which pose closure problems in the kinetic equation. Here, u′ and t′ are the fluctuating parts of the velocity and temperature, respectively, of the fluid in the vicinity of the particle, and βv and βθ are inverse of the time constants for the particle velocity and temperature, respectively. The closure problems are first solved for the case of homogeneous turbulence with uniform mean velocity and temperature for the fluid phase by using Kraichnan’s Lagrangian history direct interaction (LHDI) approximation method and then the method is generalized to the case of inhomogeneous flows. Another method, which is due to Van Kampen, is used to solve the closure problems, resulting in a closed kinetic equation identical to the equation obtained by the LHDI method. Then, the closed equation is shown to be compatible with the transformation constraint that is proposed by extending the concept of random Galilean transformation invariance to non-isothermal flows and is referred to as the ‘extended random Galilean transformation’ (ERGT). The macroscopic equations for the particle phase describing the time evolution of statistical properties related to particle velocity and temperature are derived by taking various moments of the closed kinetic equation. These equations are in the form of transport equations in the Eulerian framework, and are computed for the case of two-phase homogeneous shear turbulent flows with uniform temperature gradients. The predictions are compared with the direct numerical simulation (DNS) data which are generated as another part of this study. The predictions for the particle phase require statistical properties of the fluid phase which are taken from the DNS data. In DNS, the continuity, Navier–Stokes, and energy equations are solved for homogeneous turbulent flows with uniform mean velocity and temperature gradients. For the mean velocity gradient along the x2- (cross-stream) axis, three different cases in which the mean temperature gradient is along the x1-, x2-, and x3-axes, respectively, are simulated. The statistical properties related to the particle phase are obtained by computing the velocity and temperature of a large number of particles along their Lagrangian trajectories and then averaging over these trajectories. The comparisons between the model predictions and DNS results show very encouraging agreement.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3