Scattering and distortion of the unsteady motion on transversely sheared mean flows

Author:

Goldstein M. E.

Abstract

It is shown that the pressure and velocity fluctuations of the unsteady motion on a transversely sheared mean flow can be expressed entirely in terms of the derivatives of two potential functions. One of these is a convected quantity (i.e. it is frozen in the flow) that can be specified as a boundary condition and is related to a transverse component of the upstream velocity field. The other can be determined by solving an inhomogeneous wave equation whose source term is also a convected quantity that can be specified as a boundary condition in any given problem. The latter is related to the curl of the upstream vorticity field. The results are used to obtain an explicit representation of the three-dimensional gust-like or hydrodynamic motion on a transversely sheared mean flow. It is thereby shown that this motion is ‘driven’ entirely by the two convected quantities alluded to above.The general theory is used to study the interaction of an unsteady flow with a scmi-infinite plate embedded in a shear layer. The acoustic field produced by this interaction is calculated in the limits of low and high frequency. The results are compared with experimental one-third octave sound pressure level radiation patterns. The agreement is found to be excellent, especially in the low frequency range, where the mean-flow and convective effects are shown to have a strong influence on the directivity of the sound.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges and opportunities for low noise electric aircraft;International Journal of Aeroacoustics;2022-06-28

2. Theoretical Foundation of Rapid Distortion Theory on Transversely Sheared Mean Flows;Fluids;2020-04-27

3. Rapid distortion theory on transversely sheared mean flows of arbitrary cross-section;Journal of Fluid Mechanics;2019-10-24

4. Sound generation due to the interaction of turbulence with surfaces embedded in transversely sheared flow;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-10-14

5. High Frequency Scattering in Rotational Flow;25th AIAA/CEAS Aeroacoustics Conference;2019-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3