Abstract
The stability and transition of flow past a pair of circular cylinders in a side-by-side arrangement are investigated by numerical simulations and linear stability analyses. Various flow patterns around the cylinders have been reported to appear due to an instability of the steady symmetric flow that is realized at small Reynolds numbers, among which deflected oscillatory flow is particularly noticeable. The physical origin of the flow is explored by bifurcation analyses of the numerical data. We found that the deflected oscillatory flow arises from the steady symmetric flow through sequential instabilities due to stationary and oscillatory unstable modes. Steady asymmetric flow with respect to the streamwise centreline between the two cylinders was also found to be induced by the instability due to a stationary mode in a very narrow range of the gap width between the two cylinders. We classify the instability modes of the steady symmetric flow into four groups in the parameter space of the gap width, and evaluate the critical Reynolds number for each mode of instability.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献