Transverse velocity increments in turbulent flow using the RELIEF technique

Author:

NOULLEZ A.,WALLACE G.,LEMPERT W.,MILES R. B.,FRISCH U.

Abstract

Non-intrusive measurements of the streamwise velocity in turbulent round jets in air are performed by recording short-time displacements and distorsions of very thin tagging lines written spanwise into the flow. The lines are written by Raman-exciting oxygen molecules and are interrogated by laser-induced electronic fluorescence (relief). This gives access to the spatial structure of transverse velocity increments without recourse to the Taylor hypothesis. The resolution is around 25 μm, less than twice the Kolmogorov scale η for the experiments performed (with Rλ≈360–600).The technique is validated by comparison with results obtained from other techniques for longitudinal or transverse structure functions up to order 8. The agreement is consistent with the estimated errors – a few percent on exponents determined by extended-self-similarity – and indicates significant departures from Kolmogorov (1941) scaling.Probability distribution functions of transverse velocity increments Δu over separations down to 1:8η are reported for the first time. Violent events, with Δu comparable to the r.m.s. turbulent velocity fluctuation, are found to take place with statistically significant probabilities. The shapes of the corresponding lines suggest the effect of intense slender vortex filaments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dispersion and deformation of molecular patterns written in turbulent air;Physical Review Fluids;2024-01-12

2. Dependence of the asymptotic energy dissipation on third-order velocity scaling;Physical Review Fluids;2023-08-11

3. Types of quantum turbulence;AVS Quantum Science;2023-05-08

4. Molecular Tagging Velocimetry in Gases;Optical Diagnostics for Reacting and Non-Reacting Flows: Theory and Practice;2023-01

5. Dispersion of Molecular Patterns Written in Turbulent Air;Physical Review Letters;2022-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3