On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers

Author:

ZAKI TAMER A.,SAHA SANDEEP

Abstract

Studies of vortical interactions in boundary layers have often invoked the continuous spectrum of the Orr–Sommerfeld (O-S) equation. These vortical eigenmodes provide a link between free-stream disturbances and the boundary-layer shear – a link which is absent in the inviscid limit due to shear sheltering. In the presence of viscosity, however, a shift in the dominant balance in the operator determines the structure of these eigenfunctions inside the mean shear. In order to explain the mechanics of shear sheltering and the structure of the continuous modes, both numerical and asymptotic solutions of the linear perturbation equation are presented in single- and two-fluid boundary layers. The asymptotic analysis identifies three limits: a convective shear-sheltering regime, a convective–diffusive regime and a diffusive regime. In the shear-dominated limit, the vorticity eigenfunction possesses a three-layer structure, the topmost being a region of exponential decay. The role of viscosity is most pronounced in the diffusive regime, where the boundary layer becomes ‘transparent’ to the oscillatory eigenfunctions. Finally, the convective–diffusive regime demonstrates the interplay between the the accumulative effect of the shear and the role of viscosity. The analyses are complemented by a physical interpretation of shear-sheltering mechanism. The influence of a wallfilm, in particular viscosity and density stratification, and surface tension are also evaluated. It is shown that a modified wavenumber emerges across the interface and influences the penetration of vortical disturbances into the two-fluid shear flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3