Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays

Author:

ESMAEELI ASGHAR,TRYGGVASON GRÉTAR

Abstract

Direct numerical simulations of the motion of two- and three-dimensional buoyant bubbles in periodic domains are presented. The full Navier–Stokes equations are solved by a finite difference/front tracking method that allows a fully deformable interface between the bubbles and the ambient fluid and the inclusion of surface tension. The governing parameters are selected such that the average rise Reynolds number is O(1) and deformations of the bubbles are small. The rise velocity of a regular array of three-dimensional bubbles at different volume fractions agrees relatively well with the prediction of Sangani (1988) for Stokes flow. A regular array of two- and three-dimensional bubbles, however, is an unstable configuration and the breakup, and the subsequent bubble–bubble interactions take place by ‘drafting, kissing, and tumbling’. A comparison between a finite Reynolds number two-dimensional simulation with sixteen bubbles and a Stokes flow simulation shows that the finite Reynolds number array breaks up much faster. It is found that a freely evolving array of two-dimensional bubbles rises faster than a regular array and simulations with different numbers of two-dimensional bubbles (1–49) show that the rise velocity increases slowly with the size of the system. Computations of four and eight three-dimensional bubbles per period also show a slight increase in the average rise velocity compared to a regular array. The difference between two- and three-dimensional bubbles is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 207 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3