Deformation of a droplet adhering to a solid surface in shear flow: onset of interfacial sliding

Author:

DIMITRAKOPOULOS P.

Abstract

In this paper we consider the dynamics of droplets attached to rough or chemically inhomogeneous solid substrates with a circular contact line as they are deformed in subcritical and supercritical simple shear flows. Our main interest is concentrated on identifying the portions of the contact line where the contact angle hysteresis condition is first violated, i.e. the portions of the contact line which slide first. To address this physical problem, we employ our fully implicit time integration algorithm for interfacial dynamics in Stokes flow. Our study reveals that droplets with small and moderate initial angles show an early period where both upstream and downstream sliding are equally favourable as well as a late downstream-favoured period. By contrast, droplets with large initial angles, after a rather small early equally favourable period, show a large period where downstream sliding is more favourable than the upstream sliding. Owing to the surface tension force, droplets with intermediate initial angles are shown to be more stable. Droplets with different viscosity ratio show similar behaviour with respect to the onset of interfacial sliding; however, the viscosity ratio strongly affects the rate of the interfacial deformation and the equilibrium conditions. An asymptotic behaviour for very small or large viscosity ratios is shown to exist.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3