Compressible vortex reconnection

Author:

Virk D.,Hussain F.,Kerr R. M.

Abstract

Reconnection of two antiparallel vortex tubes is studied as a prototypical coherent structure interaction to quantify compressibility effects in vorticity dynamics. Direct numerical simulations of the Navier-Stokes equations for a perfect gas are carried out with initially polytropically related pressure and density fields. For an initial Reynolds number (Re = Γ /v, circulation divided by the kinematic viscosity) of 1000, the pointwise initial maximum Mach number (M) is varied from 0.5 to 1.45. At M=0.5, not surprisingly, the dynamics are essentially incompressible. As M increases, the transfer of Γ starts earlier. For the highest M, we find that shocklet formation between the two vortex tubes enhances early Γ transfer due to viscous cross-diffusion as well as baroclinic vorticity generation. The reconnection at later times occurs primarily due to viscous cross-diffusion for all M. However, with increasing M, the higher early Γ transfer reduces the vortices’ curvature growth and hence the Γ transfer rate; i.e. for the Re case studied, the reconnection timescale increases with M. With increasing M, reduced vortex stretching by weaker ‘bridges’ decreases the peak vorticity at late times. Compressibility effects are significant in countering the stretching of the bridges even at late times. Our observations suggest significantly altered coherent structure dynamics in turbulent flows, when compressible.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference51 articles.

1. Virk, D. , Melander, M. V. & Hussain, F. 1994 Dynamics of a polarized vortex ring.J. Fluid Mech. 260,23–55.

2. Ashurst, W. T. & Meiron, D. I. 1987 Numerical study of vortex reconnection.Phys. Rev. Lett. 58,1632–1635.

3. Melander, M. V. & Hussain, F. 1990 Topological aspects of vortex reconnection. InTopological Fluid Mechanics (ed. H.K. Moffatt & A. Tsinober ), pp.485–499.Cambridge University Press.

4. Schatzle, P. 1987 An experimental study of fusion of vortex rings . PhD thesis,California Institute of Technology.

5. Melander, M. V. & Hussain, F. 1994b Core dynamics on a vortex column.Fluid Dvn. Res. 13,1–37.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3