Particle motion near and inside an interface

Author:

POZRIKIDIS C.

Abstract

The motion of a spherical particle near the interface between two immiscible viscous fluids undergoing simple shear flow is considered in the limit of small Reynolds and capillary numbers where the interface exhibits negligible deformation. Taking advantage of the rotational symmetry of the boundaries of the flow with respect to the axis that is normal to the interface and passes through the particle centre, the problem is formulated as a system of one-dimensional integral equations for the first Fourier coefficients of the unknown components of the traction and velocity along the particle and interface contours. The results document the particle translational and angular velocities, and reveal that the particle slips while rolling over the interface under the influence of a simple shear flow, for any viscosity ratio. In the second part of the investigation, the motion of an axisymmetric particle straddling a planar interface is considered. The results confirm a simple exact solution when a particle with top-down symmetry is immersed half-way in each fluid and translates parallel to the interface, reveal a similar simple solution for a particle that is held stationary in simple shear flow, and document the force and torque exerted on a spherical particle for more general arrangements. The onset of a non-integrable singularity of the traction at the contact line prohibits the computation of the translational and angular velocities of a freely suspended particle convected under the action of a shear flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3