Abstract
An analytical model is developed to explain the equilibration mechanism of the salt finger instability in unbounded temperature and salinity gradients. The theory is based on the weakly nonlinear asymptotic expansion about the point of marginal instability. The proposed solutions attribute equilibration of salt fingers to a combination of two processes: (i) the triad interaction and (ii) spontaneous development of the mean vertical shear. The non-resonant triad interactions control the equilibration of linear growth for moderate and large values of Prandtl number (Pr) and for slightly unstable parameters. For small Pr and/or rigorous instabilities, the mean shear effects become essential. It is shown that, individually, neither the mean field nor the triad interaction models can accurately describe the equilibrium patterns of salt fingers in all regions of the parameter space. Therefore, we propose a new hybrid model, which represents both stabilizing effects in a single framework. The resulting solutions agree with the fully nonlinear numerical simulations over a wide range of governing parameters.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献