Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3

Author:

MAYER CHRISTIAN S. J.,VON TERZI DOMINIC A.,FASEL HERMANN F.

Abstract

A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer at Mach 3. Its downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using linear-stability theory, parabolized stability equations and direct numerical simulations (DNS). In the present paper, the linear regime is studied first in great detail. The focus of the second part is the early and late nonlinear regimes. It is shown how the disturbance wave spectrum is filled up by nonlinear interactions and which flow structures arise and how these structures locally break down to small scales. Finally, the study answers the question whether a fully developed turbulent boundary layer can be reached by oblique breakdown. It is shown that the skin friction develops such as is typical of transitional and turbulent boundary layers. Initially, the skin friction coefficient increases in the streamwise direction in the transitional region and finally decays when the early turbulent state is reached. Downstream of the maximum in the skin friction, the flow loses its periodicity in time and possesses characteristic mean-flow and spectral properties of a turbulent boundary layer. The DNS data clearly demonstrate that oblique breakdown can lead to a fully developed turbulent boundary layer and therefore it is a relevant mechanism for transition in two-dimensional supersonic boundary layers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3