Theory of the pressure–strain rate. Part 2. Diagonal elements

Author:

Weinstock J.

Abstract

A theoretical calculation is made of (the diagonal elements of) pressure-strain-rate calculation ρ0−1p[∇u + (∇u)T]〉 for a simple turbulent shear flow. This calculation parallels a previous calculation of the off-diagonal element. The calculation is described as follows. (1) Beginning with the Navier-Stokes equation, an expression for the (diagonal) pressure-strain-rate term is derived analytically in terms of measurable quantities (velocity spectra) - this derivation makes use of a cumulant discard. (2) It is proved that, to lowest order in the spectral anisotropy, the diagonal pressure-strain-rate term is linearly proportional to the diagonal Reynolds-stress elements. (3) A formula is derived for the proportionality constants (Rotta constants) in terms of arbitrary spectra. (4) This formula is used to calculate theoretically the numerical value of Rotta's constant Cii for models of velocity spectra (the variation of Cii with variations of spectral shapes and of Reynolds number are also determined). (5) Deficiencies and limitations of Rotta's model are identified and discussed.It is found that Rotta's expression for 2ρ0−1pui/∂i〉 is only valid for special spectra. Surprisingly large deviations of Rotta's expression from theory are found for a more complex spectra thought to be typical of simple shear flow. In addition, it is found that Cxz is intrinsically and quantitatively different from Cii because the latter depends importantly on the large-wavenumber part of the spectrum (the inertial subrange) whereas the former does not. The numerical ratio Czz/Cxz is calculated theoretically and shown to be about 2 for the zero-moment model. It is concluded that a linear term in the stress anisotropy as proposed by Rotta does not always exist. The deviation of Rotta's model from theory is understood by distinguishing between the spectral anisotropy and the stress anisotropy.For the zero-moment spectral model, where the Rotta relation is valid, it is found that Cii varies significantly with large Reynolds number but is rather insensitive to the large-wavelength part of the spectrum.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference18 articles.

1. Weinstock, J. 1981 J. Fluid Mech. 105,369–395.

2. Kraichman, R. 1959 J. Fluid Mech. 5,497–543.

3. Comte-Bellot, G. & Corrsin, S. 1971 J. Fluid Mech. 48,273–337.

4. Wyngaard, J. C. 1980 In Turbulent Shear Flows 2 (ed. J. S. Bradley , F. Durst , B. E. Launder , F. W. Schmidt & J. H. Whitelaw ).Springer.

5. Harris, V. G. , Graham, J. A. H. & Corrsin, S. 1977 J. Fluid Mech. 81,657–687.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3