Experimental studies of strongly stratified flow past three-dimensional orography

Author:

VOSPER S. B.,CASTRO I. P.,SNYDER W. H.,MOBBS S. D.

Abstract

Stably stratified flows past three-dimensional orography have been investigated using a stratified towing tank. Flows past idealized axisymmetric orography in which the Froude number, Fh=U/Nh (where U is the towing speed, N is the buoyancy frequency and h is the height of the obstacle) is less than unity have been studied. The orography considered consists of two sizes of hemisphere and two cones of different slope. For all the obstacles measurements show that as Fh decreases, the drag coefficient increases, reaching between 2.8 and 5.4 times the value in neutral flow (depending on obstacle shape) for Fh[les ]0.25. Local maxima and minima in the drag also occur. These are due to the finite depth of the tank and can be explained by linear gravity-wave theory. Flow visualization reveals a lee wave train downstream in which the wave amplitude is O(Fhh), the smallest wave amplitude occurring for the steepest cone. Measurements show that for all the obstacles, the dividing-streamline height, zs, is described reasonably well by the formula zs/h=1−Fh. Flow visualization and acoustic Doppler velocimeter measurements in the wake of the obstacles show that vortex shedding occurs when Fh[les ]0.4 and that the period of the vortex shedding is independent of height. Based on velocity measurements in the wake of both sizes of hemisphere (plus two additional smaller hemispheres), it is shown that a blockage-corrected Strouhal number, S2c =fL2/Uc, collapses onto a single curve when plotted against the effective Froude number, Fhc=Uc/Nh. Here, Uc is the blockage-corrected free-stream speed based on mass-flux considerations, f is the vortex shedding frequency and L2 is the obstacle width at a height zs/2. Collapse of the data is also obtained for the two different shapes of cone and for additional measurements made in the wake of triangular and rectangular at plates. Indeed, the values of S2c for all these obstacles are similar and this suggests that despite the fact that the obstacle widths vary with height, a single length scale determines the vortex-street dynamics. Experiments conducted using a splitter plate indicate that the shedding mechanism provides a major contribution to the total drag (∼25%). The addition of an upstream pointing ‘verge region’ to a hemisphere is also shown to increase the drag significantly in strongly stratified flow. Possible mechanisms for this are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3