Onset of Küppers–Lortz-like dynamics in finite rotating thermal convection

Author:

RUBIO A.,LOPEZ J. M.,MARQUES F.

Abstract

The onset of thermal convection in a finite rotating cylinder is investigated using direct numerical simulations of the Navier–Stokes equations with the Boussinesq approximation in a regime in which spatio-temporal complexity is observed directly after onset. The system is examined in the non-physical limit of zero centrifugal force as well as with an experimentally realizable centrifugal force, leading to two different paths to Küppers–Lortz-like spatio-temporal chaos. In the idealized case, neglecting centrifugal force, the onset of convection occurs directly from a conduction state, resulting in square patterns with slow roll switching, followed at higher thermal driving by straight roll patterns with faster roll switching. The case with a centrifugal force typical of laboratory experiments exhibits target patterns near the theoretically predicted onset of convection, followed by a rotating wave that emerges via a Hopf bifurcation. A subsequent Hopf bifurcation leads to ratcheting states with sixfold symmetry near the axis. With increasing thermal driving, roll switching is observed within the ratcheting lattice before Küppers–Lortz-like spatio-temporal chaos is observed with the dissolution of the lattice at a slightly stronger thermal driving. For both cases, all of these states are observed within a 2% variation in the thermal driving.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3