Roll-pattern evolution in finite-amplitude Rayleigh–Beńard convection in a two-dimensional fluid layer bounded by distant sidewalls

Author:

Daniels P. G.

Abstract

This paper considers the temporal evolution of two-dimensional Rayleigh–Bénard convection in a shallow fluid layer of aspect ratio 2L ([Gt ] 1) confined laterally by rigid sidewalls. Recent studies by Cross et al. (1980, 1983) have shown that for Rayleigh numbers in the range R = R0 + O(L−1) (where R0 is the critical Rayleigh number for the corresponding infinite layer) there exists a class of finite-amplitude steady-state ‘phase-winding’ solutions which correspond physically to the possibility of an adjustment in the number of rolls in the container as the local value of the Rayleigh number is varied. It has been shown (Daniels 1981) that in the temporal evolution of the system the final lateral positioning of the rolls occurs on the long timescale t = O(L2) when the phase function which determines the number of rolls in the system satisfies a one-dimensional diffusion equation but with novel boundary conditions that represent the effect of the sidewalls. In the present paper this system is solved numerically in order to determine the precise way in which the roll pattern adjusts after a change in the Rayleigh number of the system. There is an interesting balance between, on the one hand, a tendency for the number of rolls to change by the least number possible and, on the other, a tendency for the even or odd nature of the initial configuration to be preserved during the transition. In some cases this second property renders the natural evolution susceptible to arbitrarily small external disturbances, which then dictate the form of the final roll pattern.The complete transition involves an analysis of the motion on three timescales, a conductive scale t = O(1), a convective growth scale t = O(L) and a convective diffusion scale t = O(L2).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference16 articles.

1. Greenside, H. S. , Coughran, W. M. & Schryer, N. L. 1982 Phys. Rev. Lett. 49,726.

2. Daniels, P. G. 1978 Mathematika 25,216.

3. Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38,279.

4. Koschmieder, E. L. & Pallas, S. G. 1974 Intl J. Heat Mass Transfer 17,991.

5. Cross, M. C. , Daniels, P. G. , Hohenberg, P. C. & Siggia, E. D. 1980 Phys. Rev. Lett. 45,898.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3