Fluidization by lift of 300 circular particles in plane Poiseuille flow by direct numerical simulation

Author:

CHOI HYOUNG G.,JOSEPH DANIEL D.

Abstract

We study the transport of a slurry of heavier-than-liquid circular particles in a plane pressure-driven flow in a direct simulation. The flow is calculated in a periodic domain containing 300 circular particles. The study leads to the concept of fluidization by lift in which all the particles are suspended by lift forces against gravity perpendicular to the flow. The study is framed as an initial-value problem in which a closely packed cubic array of particles resting on the bottom of the channel is lifted into suspension. All the details of the flow are resolved numerically without model assumptions. The fluidization of circular particles first involves bed inflation in which liquid is driven into the bed by high pressure at the front and low pressure at the back of each circle in the top row. This kind of bed inflation occurs even at very low Reynolds numbers but it takes more time for the bed to inflate as the Reynolds number is reduced. It appears that the bed will not inflate if the shear Reynolds number is below the critical value for single particle lift-off. The flows with a single particle are completely determined by a shear Reynolds number and a gravity parameter when the density ratio and aspect ratio parameters are specified. In the multi-particle case, the volume fraction and distribution also matters. The transition to a fully fluidized slurry by waves is discussed.An analytical model of the steady motion of a single particle dragged forward in a Poiseuille flow is derived and compared with a simulation. The undisturbed fluid velocity is always larger than the particle velocity, producing a fluid hold-up. The effect of the hold-up in the many particle case is to greatly reduce the velocity of the mixture which may be described by a two-fluid model in which the solid laden mixture is regarded as a second fluid with effective properties.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3