Sphere–wall collisions: vortex dynamics and stability

Author:

THOMPSON MARK C.,LEWEKE THOMAS,HOURIGAN KERRY

Abstract

For moderate Reynolds numbers, a sphere colliding with a wall in the normal direction will lead to a trailing recirculating wake, threading over the sphere after impact and developing into a complex vortex-ring system as it interacts with vorticity generated at the wall. The primary vortex ring, consisting of the vorticity from the wake of the sphere prior to impact, persists and convects, relatively slowly, outwards away from the sphere owing to the motion induced from its image. The outward motion is arrested only a short distance from the axis because of the strong interaction with the secondary vorticity. In this paper, the structure and evolution of this combined vortex system, consisting of a strong compact primary vortex ring surrounded by and interacting with the secondary vorticity, is quantified through a combined experimental and numerical study. The Reynolds-number range investigated is (100 < Re < 2000). At Reynolds numbers higher than about 1000, a non-axisymmetric instability develops, leading to rapid distortion of the ring system. The growth of the instability does not continue indefinitely, because of the dissipative nature of the flow system; it appears to reach a peak when the wake vorticity first forms a clean primary vortex ring. A comparison of the wavelength, growth rate and perturbation fields predicted from both linear stability theory and direct simulations, together with theoretical predictions, indicates that the dominant physical mechanism for the observed non-axisymmetric instability is centrifugal in nature. The maximum growth occurs at the edge of the primary vortex core, where the vorticity changes sign. Notably, this is a physical mechanism different from that proposed previously to explain the development of the three-dimensional flow of an isolated vortex ring striking a wall.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3