Experiments on gravity currents propagating down slopes. Part 2. The evolution of a fixed volume of fluid released from closed locks into a long, open channel

Author:

MAXWORTHY T.

Abstract

A series of experiments have been carried out on gravity currents released from locks of various dimensions into a sloping, open channel. Initially all the driving heads of the gravity currents grew by addition of heavier material from a following down-slope flow and by entrainment of ambient fluid, as in Maxworthy & Nokes (J. Fluid Mech., vol. 584, 2007, pp. 433–453). After propagating a distance of the order of 5–10 lock lengths the inflow into the rear stopped, and the head began to lose buoyancy-containing fluid from its rear by the detachment of large, weakly vortical structures. At the same time it was still entraining fluid over the majority of its surface so that its mean density was reduced. Measurements using a semi-direct method, in which dye concentration was used as a surrogate for density, have shown that the buoyancy in the current head increased during the first phase and decreased during the second. At no stage was the buoyancy constant except, of course, at the location and time at which the buoyancy was maximum with a magnitude significantly smaller than the initial value in the lock. Despite this the constant buoyancy theory of Beghin, Hopfinger & Britter (J. Fluid Mech., vol. 107, 1981, pp. 407–422), in which the head location x varies with time t as t2/3 during the later velocity-decay stage of the evolution, was found to be remarkably robust as a description of the evolution over both the latter part of the increasing-buoyancy stage and all of the decreasing-buoyancy phase. Critically, however, the multiplying coefficient had to be smaller than presented by them in order to track the experimental data with precision. This was due principally to the observation that the buoyancy at the beginning of the decay phase was considerably smaller than the initial buoyancy in the lock.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3