Evaporation and combustion of thin films of liquid fuels

Author:

ARMENDÁRIZ J.,MATALON M.

Abstract

We consider the evaporation and subsequent burning of thin films of liquid fuels. Previous studies on liquid films, with and without evaporation, have primarily considered the gas phase to be passive. The new element in this study is the introduction of combustion and the examination of both the liquid and gas phases and their effect on the film's behaviour. For the case of a liquid film burning in quiescent air we show that the problem can be simplified to a single nonlinear evolution equation for the film thickness. All remaining variables, which are simply expressed in terms of the function describing the instantaneous position of the liquid–vapour interface, are subsequently determined. This equation is then solved in order to understand the dynamics of the film in the presence of evaporation and combustion.The planar configuration is discussed first. Predictions for the total evaporation time are obtained, along with the time history of the film thickness, the interfacial surface temperature, the flame standoff distance and its temperature, and the mass burning rate. The dependence of the burning characteristics on the fuel and oxidizer Lewis numbers, which measure the relative importance of thermal and molecular diffusivities, is also determined. Second, we analyse the case of a non-planar interface, where temperature variations along the film's surface cause fluid motion in the liquid that could either dampen or amplify spatial non-uniformities. We show that, while thermocapillarity has the tendency to destabilize the planar interface, combustion acts to reduce this effect. In particular, when the heat release by combustion is substantial, all disturbances are obliterated, the film remains nearly planar and the burning occurs along nearly horizontal surfaces.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3