The vorticity jump across a shock in a non-uniform flow

Author:

KEVLAHAN N. K.-R.

Abstract

The vorticity jump across an unsteady curved shock propagating into a two-dimensional non-uniform flow is considered in detail. The exact general expression for the vorticity jump across a shock is derived from the gasdynamics equations. This general expression is then simplified by writing it entirely in terms of the Mach number of the shock MS and the local Mach number of the flow ahead of the shock MU.The vorticity jump is very large at places where the curvature of the shock is very large, even in the case of weak shocks. Vortex sheets form behind shock-shocks (associated with kinks in the shock front).The ratio of vorticity production by shock curvature to vorticity production by baroclinic effects is O(½(γ−1)M2U), where γ is ratio of specific heats, which is very small if the flow ahead of the shock is only weakly compressible. If, however, the tangential gradient along the shock of M2U is large then baroclinic production is significant; this is the case in turbulent flows with large gradients of turbulent kinetic energy ½M2U. The vorticity jump across a weak shock decreases in proportion to shock intensity if the flow ahead of the shock is rotational, rather than in proportion to the cube of shock intensity as is often assumed, and thus is not negligible. It is also shown that vorticity may be generated across a straight shock even if the flow ahead of the shock is irrotational. The importance of the contribution to the vorticity jump by non-uniformities in the flow ahead of the shock has not been recognized in the past.Examples are given of the vorticity jump across strong and weak shocks in a variety of flows exhibiting some properties of turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3