Asymptotic expansions for laminar forced-convection heat and mass transfer Part 2. Boundary-layer flows

Author:

Goddard J. D.,Acrivos Andreas

Abstract

This is the second of two articles by the authors dealing with asymptotic expansions for forced-convection heat or mass transfer to laminar flows. It is shown here how the method of the first paper (Acrivos & Goddard 1965), which was used to derive a higher-order term in the large Péclet number expansion for heat or mass transfer to small Reynolds number flows, can yield equally well higher-order terms in both the large and the small Prandtl number expansions for heat transfer to laminar boundary-layer flows. By means of this method an exact expression for the first-order correction to Lighthill's (1950) asymptotic formula for heat transfer at large Prandtl numbers, as well as an additional higher-order term for the small Prandtl number expansion of Morgan, Pipkin & Warner (1958), are derived. The results thus obtained are applicable to systems with non-isothermal surfaces and arbitrary planar or axisymmetric flow geometries. For the latter geometries a derivation is given of a higher-order term in the Péclet number expansion which arises from the curvature of the thermal layer for small Prandtl numbers. Finally, some applications of the results to ‘similarity’ flows are also presented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference12 articles.

1. Boussinesq, J. 1905 J. Math. Pures Appl. 1,28.

2. Schlichting, H. 1955 Boundary Layer Theory .New York:Pergamon Press.

3. Merk, H. J. 1959 J. Fluid Mech. 5,46.

4. Acrivos, A. & Goddard, J. D. 1965 J. Fluid Mech. 23,27.

5. Taylor, T. D. & Acrivos, A. 1964 J. Fluid Mech. 18,46.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3