Shock regularization in dense gases by viscous–inviscid interactions

Author:

KLUWICK A.,MEYER G.

Abstract

Transonic high-Reynolds-number flows through channels which are so narrow that the classical boundary-layer approach fails locally are considered in the presence of a weak stationary normal shock. As a consequence, the properties of the inviscid core and the viscosity-dominated boundary-layer region can no longer be determined in subsequent steps but have to be calculated simultaneously in a small interaction region. Under the requirement that the core-region flow should be considered to be one-dimensional to the leading order the resulting problem of shock–boundary-layer interaction is formulated by the means of matched asymptotic expansions for laminar flows of dense gases (Bethe–Zel'dovich–Thompson, or BZT, fluids). Such fluids have the distinguishing feature that the fundamental derivative of gas dynamics can become negative or even change sign under the thermodynamic conditions to be considered. The regularizing properties of the mechanism of viscous–inviscid interactions on the different anomalous shock forms possible in the flow of dense gases with mixed nonlinearity, namely rarefaction, sonic, double-sonic and split shocks, will be discussed. To this end we show the consistency of the resulting internal-shock profiles because of strong shock–boundary-layer interaction with a generalized shock admissibility criterion formulated for the case of purely inviscid flows. Representative solutions for the internal-shock structures are presented, and the importance of such flow phenomena in technical applications in the near future are shortly discussed by considering estimates of the actual dimensions of the interaction region for a specific representative situation in which the BZT fluid PP10 (C13F22) has been selected.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3