Plane Stokes flow driven by capillarity on a free surface. Part 2. Further developments

Author:

Hopper Robert W.

Abstract

For the free creeping viscous incompressible plane flow of a finite region, bounded by a simple smooth closed curve and driven solely by surface tension, analyzed previously, the shape evolution was described in terms of a time-dependent mapping function z = Ω(ζ,t) of the unit circle, conformal on |ζ| [les ] 1. An equation giving the time evolution of the map, typically in parametric form, was derived. In this article, the flow of the infinite region exterior to a hypotrochoid is given. This includes the elliptic hole, which shrinks at a constant rate with a constant aspect ratio. The theory is extended to a class of semi-infinite regions, mapped from Im ζ [les ] 0, and used to solve the flow in a half-space bounded by a certain groove. The depth of the groove ultimately decays inversely with time.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference7 articles.

1. Gradshteyn, I. S. & Rhyzhik, I. M. 1980 Table of Integrals, Series and Products (transl. A. Jeffrey, corrected and enlarged edition).Academic.

2. Hopper, R. W. 1990 Plane strokes flow driven by capillarity on a free surface.J. Fluid Mech. 213,349–375 (referred to herein as Part 1).

3. Hopper, R. W. 1991 Plane Stokes flow driven by capillarity on the free surfaces of a doubly-connected region.Lawrence Livermore Natl Lab. Internal Rep. UCRL-ID-105872 (January 7, 1991).

4. Sokolnikov, I. S. 1956 Mathematical Theory of Elasticity ,2nd edn. McGraw Hill.

5. Muskhelishvili, N. I. 1953 Some Basic Problems in the Mathematical Theory of Elasticity (transl. J. R. M. Radok). Groningen:P. Noordhoff.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3