Double-diffusive finger convection: influence of concentration at fixed buoyancy ratio

Author:

PRINGLE SCOTT E.,GLASS ROBERT J.

Abstract

Double-diffusive finger convection is studied experimentally in a transparent Hele-Shaw cell for a two-solute system. A less dense sucrose solution is layered on top of a more dense salt solution using a laminar flow technique, and convective motion is followed photographically from the static state. We systematically increase solute concentrations from dilute to the solubility limit of the salt solution while maintaining a fixed buoyancy ratio of approximately 1.08. Across the 14 experiments conducted, the convective motion shows considerable variation in both structure and time scale. We find that new finger pairs form continuously within a finger generation zone where complexity increases with Rayleigh number, reaches a peak, and then decreases for highly concentrated solutions. The vertical fnger length scale grows linearly in time across the full concentration range. The vertical finger velocity also increases linearly with Rayleigh number, but as the concentrations increase, deviation from linearity and asymmetrical convection occur. The horizontal length scale grows as a power law in time with the exponent constant over most of the range; again, deviations are observed for highly concentrated solutions. The observed deviations at high concentrations are attributed to the increasing nonlinearity in the governing equations as the solutions approach their solubility limits. There, the fluid properties become functions of solute concentration and vary significantly within the experimental fields suppressing structural complexity, imparting asymmetry to the convective motion, and influencing emergent vertical and horizontal length scales and their growth.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convective structures of salt fingers at a neutrally buoyant density interface;Environmental Fluid Mechanics;2024-08-06

2. On the evolution of layer dynamics and critical power laws in double-diffusive finger convection at neutral buoyancy;International Communications in Heat and Mass Transfer;2023-10

3. The Lagrangian nature of fingering convection;Journal of Fluid Mechanics;2023-05-04

4. Numerical study of salt fingers dynamics: Effects of the density inversion;Thermal Science and Engineering Progress;2023-05

5. Dynamics of fingering convection: a numerical study;Environmental Fluid Mechanics;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3